JEE136
DYNAMICS

Semester 2, 2020

Unit Outline

Nick Johnson
CONTACT DETAILS

Unit coordinator

Unit coordinator: Nick Johnson
Campus: Newnham
Email: Nick.Johnson@utas.edu.au
Phone: 03 6324 3533
Room location and number: Swanson Building, B14
Consultation hours: By appointment
CONTENTS

WHAT IS THE UNIT ABOUT? 2
UNIT DESCRIPTION 2
INTENDED LEARNING OUTCOMES 2
GRADUATE STATEMENT 3
ALTERATIONS TO THE UNIT AS A RESULT OF STUDENT FEEDBACK 3
PRIOR KNOWLEDGE &/OR SKILLS 3

HOW WILL I BE ASSESSED? 4
ASSESSMENT SCHEDULE 4
ASSESSMENT DETAILS 4
HOW YOUR FINAL RESULT IS DETERMINED 7
SUBMISSION OF ASSIGNMENTS 8
ACADEMIC INTEGRITY 9

WHAT LEARNING OPPORTUNITIES ARE THERE? 11
MyLO 11
RESOURCES 11
ACTIVITIES 13
UNIT SCHEDULE 14
COMMUNICATION 15
CONCERNS AND COMPLAINTS 15
LEARNING SUPPORT 15
FURTHER INFORMATION AND ASSISTANCE 16
WHAT IS THE UNIT ABOUT?

Unit description

The unit aims at developing the students' conceptual understanding and problem solving skills required to determine and identify various machine motions, and their force and torque effects, particularly in terms of kinematics and kinetics of rotating and translating rigid members, and the mechanical transmission of power. This unit lays a solid foundation for more advanced units undertaken in higher years such as Seakeeping and Manoeuvring, Mechanics of Marine Machinery Systems and Structural Analysis.

Topics covered in this unit include: kinematics of particles, rectilinear motion, curvilinear motion, Newton's second law, energy and momentum methods, friction, systems of particles, moment of inertia, harmonic motion and vibration. In addition, the student will also develop his/her practical engineering and teamwork skills by taking part in a problem based learning activity conducted throughout the semester.

Intended Learning Outcomes

On completion of this unit, you will be able to:

1. Demonstrate the ability to conceptualize, analyse and solve engineering mechanics problems in the dynamic context by applying suitable engineering analysis theory and methods and present their work to a professional standard.

2. Perform experiments to quantify the dynamic characteristics and response of simple objects working individually and as a team in a safe manner and report their outcomes to a professional standard in written form.

3. Understand the basic principles of vibration analysis and apply them to correctly model the dynamic behaviour of simple single degree of freedom systems.

4. Apply dynamic analysis, problem solving and teamwork skills in the design, construction and testing of an engineering quality product by working safely and ethically as part of a multicultural and multi-gender team and report the process, findings and outcomes to a professional standard in oral and written form.
Graduate Statement

Successful completion of this unit supports your development of course learning outcomes, which describe what a graduate of a course knows, understands and is able to do. Course learning outcomes are published in the Bachelor of Engineering (Specialisation) with Honours Course Rules. This document is available at http://www.amc.edu.au/ncmeh-course-information.

Course learning outcomes are developed with reference to national discipline standards, Australian Qualifications Framework (AQF), any professional accreditation requirements and the University of Tasmania’s Graduate Statement.

The University of Tasmania experience unlocks the potential of individuals. Our graduates are equipped and inspired to shape and respond to the opportunities and challenges of the future as accomplished communicators, highly regarded professionals and culturally competent citizens in local, national, and global society. University of Tasmania graduates acquire subject and multidisciplinary knowledge and skills, and develop critical and creative literacies and numeracies and skills of inquiry. They demonstrate the ability to apply this knowledge in changing circumstances. Our graduates recognise and critically evaluate issues of social responsibility, ethical conduct and sustainability, are entrepreneurial and creative, and are mindful of their own wellbeing and that of the community. Through respect for diversity and by working in collaborative ways, our graduates reflect the values of the University of Tasmania.

Alterations to the unit as a result of student feedback

The only feedback received from the last delivery that remains relevant within the current COVID-19 climate is returning marked work quicker where possible.

Prior knowledge &/or skills

Students are expected to have covered the content of:

- JEE135 Statics
- JEE113 Engineering Design and Communication
HOW WILL I BE ASSESSED?

Assessment schedule

<table>
<thead>
<tr>
<th>Assessment task</th>
<th>Date due</th>
<th>Percent weighting</th>
<th>Links to Intended Learning Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weekly Tutorials</td>
<td>Ongoing</td>
<td>10%</td>
<td>1 and 3</td>
</tr>
<tr>
<td>Class Test-Assignment</td>
<td>21st August</td>
<td>10%</td>
<td>1</td>
</tr>
<tr>
<td>Lab Report</td>
<td>9th October</td>
<td>10%</td>
<td>ALL</td>
</tr>
<tr>
<td>Rat Trap Boat Project</td>
<td>Various</td>
<td>20%</td>
<td>1, 2 and 4</td>
</tr>
<tr>
<td>Final Exam</td>
<td>TBC</td>
<td>50%</td>
<td>1 and 3</td>
</tr>
</tbody>
</table>

IMPORTANT NOTE: due to the ongoing changes in restrictions brought about by COVID-19, please be aware that the assessment tasks and requirements for this unit may change. Students will be notified in writing at the earliest opportunity should changes be necessary; please check your emails and/or the MyLO site regularly.

Assessment details

Tutorials

<table>
<thead>
<tr>
<th>Task description</th>
<th>Criterion</th>
<th>Measures Intended Learning Outcome:</th>
</tr>
</thead>
<tbody>
<tr>
<td>A small number of problems will be assigned each week for students to complete during tutorials and self-study. These problems must be completed using the required format and will be collected each week to track student progress and understanding. Tutorials will be commented each week to provide ongoing feedback. Student participation in tutorials will be monitored throughout the semester and three predetermined tutorials will be formally assessed during the semester to determine a grade for this assessment.</td>
<td>Criterion 1: Demonstrate the ability to conceptualize, analyse and solve engineering mechanics problems in the dynamic context by applying suitable engineering analysis theory and methods.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Criterion 2: Demonstrate an understanding of single degree of freedom systems vibration analysis to predict the behaviour of a vibrating structure.</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Due date</td>
<td>Tuesday @ 1400 - weeks 2 to 14 inclusive.</td>
</tr>
</tbody>
</table>
Class Test-Assignment

Task description
An open book class test-assignment which will cover aspects of the unit covered up to and including Week 5. The primary emphasis will be problem identification, formulation and solution and demonstration of the fundamentals of dynamics.

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Measures Intended Learning Outcome:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Criterion 1</td>
<td>Identify and define problems and information given, select and apply an appropriate solution strategy to solve engineering mechanics problems in a dynamics context.</td>
</tr>
</tbody>
</table>

Task length
8 hours

Due date
Week 6, 1700 Friday 21st August

Lab Report

Task description
Students are to submit a team laboratory report providing supporting calculations and explanations to assist in determining the various tasks as required in the assessment.

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Measures Intended Learning Outcome:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Criterion 1</td>
<td>Evaluate the effects of forces and moments acting on structures and mechanisms by applying relevant engineering principals and knowledge.</td>
</tr>
<tr>
<td>Criterion 2</td>
<td>Perform and technically report on experiments to quantify the dynamic characteristics of simple objects in a safe and professional manner.</td>
</tr>
<tr>
<td>Criterion 3</td>
<td>Demonstrate an understanding of single degree of freedom systems vibration analysis to predict the behaviour of a vibrating structure.</td>
</tr>
<tr>
<td>Criterion 4</td>
<td>Work as a team and solve problems to safely and successfully test, analyse and report on the behaviour of dynamic objects.</td>
</tr>
</tbody>
</table>

Task Length
Maximum 20 pages

Due date
Week 12, 1500 Friday 9th of October
Rat Trap Boat Project

| Task description | A design and construction project is to be conducted. In order to complete this project-based learning activity, students will need to work effectively in a team, apply critical thinking, manage their time and others, and prepare/present technical information professionally. Due to COVID-19 restrictions there will be alternative arrangements available for those students that are unable to, or don’t wish to, attend face-to-face activities. Further details of the RTB (and alternative) project will be communicated when further details of the impact of the restrictions are available. |

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Measures Intended Learning Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presentation Criterion 1</td>
<td>Demonstrate and apply theoretical and practical knowledge of Dynamics and related engineering principles to design a self-propelled vessel.</td>
</tr>
<tr>
<td>Presentation Criterion 2</td>
<td>Demonstrate teamwork skills to present a design to a professional standard.</td>
</tr>
<tr>
<td>Report Criterion 1</td>
<td>Demonstrate and apply theoretical and practical knowledge of Dynamics and related engineering principles to design and solve problems in the construction and testing of a self-propelled vessel.</td>
</tr>
<tr>
<td>Report Criterion 2</td>
<td>Calculate vessel properties using empirical and analytical methods to predict powering characteristics of a self-propelled vessel.</td>
</tr>
<tr>
<td>Report Criterion 3</td>
<td>Work as a team to communicate as a team in writing in the form of a professional standard technical report.</td>
</tr>
<tr>
<td>Scrutineering Criterion 1</td>
<td>Correctly predict the principal particulars of the designed vessel.</td>
</tr>
<tr>
<td>Scrutineering Criterion 2</td>
<td>Solve problems as a team in the construction and testing phases of a self-propelled vessel while adhering to a prescribed set of rules.</td>
</tr>
<tr>
<td>Race Criterion 1</td>
<td>Solve engineering mechanics problems to successfully construct a self-propelled vessel that completes the prescribed course while adhering to the prescribed rules.</td>
</tr>
<tr>
<td>Race Criterion 2</td>
<td>Quantify and optimise the dynamic response of a self-propelled vessel to complete the course in the fastest time.</td>
</tr>
<tr>
<td>Race Criterion 3</td>
<td>Work as a team to solve problems that arise from the construction and testing of a self-propelled vessel.</td>
</tr>
<tr>
<td>Task length</td>
<td>Online Team Presentation: 15 minutes + 5 minutes of questions Team Report: 20 pages maximum + attachments OPTIONAL Design Modification: 1 Page plus attachments</td>
</tr>
<tr>
<td>Due date</td>
<td>Team Presentation: Week 4, Friday 7th August Team Report: Week 10, 1500 Friday 25th September OPTIONAL Design Modification: Week 12, 1500 Tuesday 6th October Pre-race Scrutineering: Week 12, Wednesday 7th October Final Assessed Testing: Week 12, 0900-1300 Friday 9th October</td>
</tr>
</tbody>
</table>
Final Exam

Description / conditions

A closed book exam which will cover all aspects of the unit. The primary emphasis will be problem identification, formulation and solution and demonstration of fundamentals of dynamics.

If COVID-19 restrictions do not permit an invigilated exam to take place, an approach similar to the class test-assignment will be adopted. Details will be clearly communicated via MyLO announcements towards the end of semester.

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Measures Intended Learning Outcome:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Criterion 1</td>
<td>Identify and define problems and information given, select and apply an appropriate solution strategy to solve engineering mechanics problems in a dynamic context.</td>
</tr>
<tr>
<td>Criterion 2</td>
<td>Identify and define problems and information given, select and apply an appropriate solution strategy to solve single degree of freedom vibration problems.</td>
</tr>
</tbody>
</table>

Duration

3 Hours + 15 minutes reading time

Date

The final exam is conducted by the Student Centre in the formal examination period. See the Examinations and Results page on the University’s website, or access your personal exams timetable by logging into the eStudent Centre - Personal Exams Timetable for specific date, time and location closer to the examination period.

How your final result is determined

Your final result in this unit is determined according to Academic Senate Rule 6 – Admission, Assessment and Student Progress and the College of Sciences and Engineering Procedure for Processing of Results.

To achieve a full pass in this unit, you must meet all the following:

1. Attain all the Intended Learning Outcomes.
2. Achieve an overall mark of 50%.
3. Satisfy all threshold criteria, including submission of at least 12 of the 13 tutorials for this unit.
4. Your mark for your examination must be at or above 35%.

You will Fail (NN) the unit if your overall mark is less than 40%.

If you do not meet the threshold criteria (3, above), your final result will be recorded as Absent Deemed Fail (AN) with no mark recorded.
Submission of assignments

All assignments, reports, etc. must be completed using the template provided on the AMC website, unless otherwise specified by the lecturer. All coursework must have the AMC-NCMEH Assignment Cover Sheet attached which can be downloaded here: http://amc.edu.au/ncmeh-course-information

All assignments and reports must be typed and completed using Word, Excel, approved Engineering drawing software and include the relevant theory, illustrations, results, analysis, and conclusion.

Group reports must be signed by all participants.

Assignments and reports must be placed in the lecturer’s assignment box by the due dates (ground floor in the Swanson Building).

Electronic submissions are not acceptable (unless otherwise instructed by the lecturer). The assessed work will be returned during lecture or as agreed between the students and the lecturer.

Please remember that you are responsible for lodging your coursework on or before the due date. We strongly recommend that you keep a copy; even in the most ‘perfect’ of systems, items sometimes go astray.

Requests for extensions

Extensions will only be granted on medical or compassionate grounds. Requests for extensions should be made via email to the lecturer prior to the due date. Medical certificates or other evidence must be included and must contain information which justifies the extension sought.

Penalties

Late assignments which have not been granted an extension will normally not be accepted by the lecturer.

Failure to adhere with the WH&S standards whilst taking part in any assessed activity that involves field trips and/or that requires the use of UTAS or AMC facilities will result in the following penalties:

- **first offense:** 5% penalty (applicable to the whole team in team projects);

- **second offense by student (or another member of the same team in team projects):** 20% penalty (applicable to the whole team in team projects); and

- **third offense:** a fail grade in the assessment.
Review of results and appeals

If you have questions about, or problems with, your assessment you should discuss this with the following people:

(1) The person who marked the assessment.
(2) Unit Coordinator.
(3) Course Coordinator.
(4) Director, NCMEH.

If this does not resolve the issue, you may file a formal review of assessment. The procedure is given at: http://www.utas.edu.au/exams/results

Academic integrity

What is academic integrity?

The University community is committed to upholding the Statement on Academic Integrity. A breach of academic integrity is defined as being when a student:

a) fails to meet the expectations of academic integrity; or
b) seeks to gain, for themselves or for any other person, any academic advantage or advancement to which they or that other person is not entitled; or

c) improperly disadvantages any other member of the University community.

Breaches of academic integrity such as plagiarism, contract cheating, collusion and so on are counter to the fundamental values of the University and can result in a range of penalties. These penalties are outlined in Ordinance 9: Student Academic Integrity.

More information is available from the Academic Integrity for Students webpage.

The University and any persons authorised by the University may submit your assessable works to a text matching service, to obtain a report on possible instances of plagiarism or contract cheating.

Academic Integrity Training Module

As part of the University's educative approach to academic integrity, there is a short Academic Integrity Training Module that all students are required to complete.

Completion of the module allows you to demonstrate your understanding of what constitutes academic misconduct.

The Academic Integrity Training Module is available for all students through MyLO.

If you do not complete this module your final unit results will be withheld.

You should aim to complete the module within the first few weeks of commencing study at the University.
Academic referencing

In your written work you will need to support your ideas by referring to scholarly literature, works of art and/or inventions. It is important that you understand how to correctly refer to the work of others and maintain academic integrity.

Failure to appropriately acknowledge the ideas of others constitutes a breach of academic integrity, a matter considered by the University of Tasmania as a serious offence.

The appropriate referencing style for this unit is American Psychological Association (APA) 6th Edition.

The University library provides information on presentation of assignments, including referencing styles and should be referred to when completing tasks in this unit.

For further information, see the Academic Integrity for Students webpage.
WHAT LEARNING OPPORTUNITIES ARE THERE?

MyLO

MyLO is the online learning environment at the University of Tasmania. This is the system that will host the online learning materials and activities for this unit. MyLO will be used to distribute course materials, assist communications and to submit assessments.

Getting help with MyLO

It is important that you are able to access and use MyLO as part of your study in this unit. To find out more about the features and functions of MyLO, and to practice using them, visit the Getting Started in MyLO unit.

For access to information about MyLO and a range of step-by-step guides in pdf, word and video format, visit the MyLO Student Support page on the University website.

If something is not working as it should, contact the Service Desk (Service.Desk@utas.edu.au, phone 6226 1818), or Request IT Help Online.

Resources

Required readings

You will need the following text:

It is important that you have ongoing access to the requisite text. Although the book may be available for loan from the University of Tasmania Library, you are strongly encouraged to purchase a copy of the text as it will be a useful resource throughout your study.
Recommended readings

Principles of Naval Architecture Series, various authors, published by SNAME.

These materials may be useful for developing your knowledge and understanding of the content in this unit, but you are not required to purchase them. When seeking sources of evidence to support your assignment work, you may find these a useful starting point.

Equipment, materials, software, accounts

Materials to be provided by the student

- Webcam and Microphone to enable two way web conferencing
- A non-programmable scientific calculator
- A4 Paper suitable for submission of tutorial problems
- Drawing equipment necessary to generate neat, clear and professional hand-drawn diagrams
- Notebook for note-taking and non-submitted practice problems
- Safety Footwear
- Ability to scan and upload documents to MyLO

Materials to be provided by AMC

- 2 Rat Traps per Rat Trap Boat Group

Extra costs

- Printing of assessments and any materials via MyLO
- Additional costs associated with project

Computer hardware & software

- A wide suite of engineering and academic software including AutoCAD, Inventor, Rhinoceros, MS Word, MS Excel, MathType, Endnote and MATLAB are provided for students in the computer labs.
Learning expectations

The University is committed to high standards of professional conduct in all activities, and holds its commitment and responsibilities to its students as being of paramount importance. Likewise, it holds expectations about the responsibilities students have as they pursue their studies within the special environment the University offers.

Students are expected to participate actively and positively in the teaching/learning environment. They must attend classes when and as required, strive to maintain steady progress within the subject or unit framework, comply with workload expectations, and submit required work on time.

Details of teaching arrangements

<table>
<thead>
<tr>
<th>CLASS</th>
<th>DAY</th>
<th>TIME</th>
<th>LOCATION</th>
<th>GROUP*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scheduled time for watching Recordings</td>
<td>Monday</td>
<td>1500-1700</td>
<td>N/A</td>
<td>All</td>
</tr>
<tr>
<td>Synchronous Live Online Sessions</td>
<td>Tuesday</td>
<td>1400-1500, 1500-1600, 1600-1700</td>
<td>MyLO Collaborate</td>
<td>Group 1, Group 2, Group 3</td>
</tr>
<tr>
<td>Extra Non-Compulsory Class</td>
<td>Wednesday</td>
<td>1100-1200</td>
<td>MyLO Collaborate</td>
<td>As desired</td>
</tr>
<tr>
<td>Lab</td>
<td>Friday 25<sup>th</sup> September</td>
<td>All Day*</td>
<td>Materials Lab (101)</td>
<td>TBA*</td>
</tr>
</tbody>
</table>

Check tutorial groups and lab timetable/groups to identify your designated time and day.
<table>
<thead>
<tr>
<th>WEEK</th>
<th>DATE BEGINNING</th>
<th>TOPIC/ MODULE/ FOCUS AREA</th>
<th>ACTIVITIES</th>
<th>RESOURCES/ READINGS/ FURTHER INFORMATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13 July</td>
<td>Introduction / Motion of a Point</td>
<td></td>
<td>Chapters 12&13</td>
</tr>
<tr>
<td>2</td>
<td>20 July</td>
<td>Motion of a Point / Force, Mass, and Acceleration</td>
<td></td>
<td>Chapters 13&14</td>
</tr>
<tr>
<td>3</td>
<td>27 July</td>
<td>Energy Methods</td>
<td></td>
<td>Chapter 15</td>
</tr>
<tr>
<td>4</td>
<td>3 August</td>
<td>Momentum Methods</td>
<td>Rat Trap Boat Presentations (Friday 7th August)</td>
<td>Chapter 16</td>
</tr>
<tr>
<td>5</td>
<td>10 August</td>
<td>Planar Kinematics of Rigid Bodies</td>
<td></td>
<td>Chapter 17</td>
</tr>
<tr>
<td>6</td>
<td>17 August</td>
<td>Planar Dynamics of Rigid Bodies</td>
<td>Class Test (Friday 21st August)</td>
<td>Chapter 18</td>
</tr>
<tr>
<td>7</td>
<td>24 August</td>
<td>Flexible / Revision</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mid-semester break: 31st August to 6th September (inclusive)</td>
</tr>
<tr>
<td>8</td>
<td>7 September</td>
<td>Energy and Momentum in Rigid Bodies (1)</td>
<td></td>
<td>Chapter 19</td>
</tr>
<tr>
<td>9</td>
<td>14 September</td>
<td>Energy and Momentum in Rigid Bodies (2)</td>
<td></td>
<td>Chapter 19</td>
</tr>
<tr>
<td>10</td>
<td>21 September</td>
<td>Lab Briefing / Vibrations</td>
<td>Rat Trap Boat Report (Friday 25th September) Lab Session (Fri 25th September)</td>
<td>Chapter 21</td>
</tr>
<tr>
<td>11</td>
<td>28 September</td>
<td>3D Kinematics and Dynamics of Rigid Bodies</td>
<td></td>
<td>Chapter 20</td>
</tr>
<tr>
<td>12</td>
<td>5 October</td>
<td>Vibrations</td>
<td>Rat Trap Boat Scrutineering (Wed 7th October) Rat Trap Boat Competition (Fri 9th October) Lab Report (Fri 9th October)</td>
<td>Chapter 21</td>
</tr>
<tr>
<td>13</td>
<td>12 October</td>
<td>Revision</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Specific attendance/performance requirements

Attendance at all assigned class times is compulsory. You are responsible for all information (both academic and administrative) presented during class times. Should you miss a class for whatever reason it is your responsibility to obtain information and catch up on content that was missed.

In this unit, your active engagement will be monitored in the following way:

1. Attendance in online live synchronous sessions
2. Submission of weekly tutorial problems
3. Engagement with the Rat Trap Boat Project

If you do not demonstrate evidence of having engaged actively with this unit by completing these two activities by Week 4 of semester, your enrolment may be cancelled or you may be withdrawn from the unit.

Work Health and Safety (WHS)

The University is committed to providing a safe and secure teaching and learning environment. In addition to specific requirements of this unit you should refer to the University’s Safety and Wellbeing webpage and policy.

Communication

News and announcements may be posted to MyLO News, and students will be expected to be aware of the content of such posts within 48 hours of them being posted.

Students are also expected to check their UTAS email very regularly (once a day) for important announcements.

Concerns and complaints

The University is committed to providing an environment in which any concerns and complaints will be treated seriously, impartially and resolved as quickly as possible. We are also committed to ensuring that a student may lodge a complaint without fear of disadvantage. If you have a concern, information about who to contact for assistance is available on the ‘How to resolve a student complaint’ page.

Learning support

The University provides a range of face-to-face and online services to help equip students with the academic and literacy skills that they need to undertake their study. These services are in addition to the support you receive in each unit from unit coordinators, lecturers and tutors. For details of these additional services such as workshops, individual consultation for learning advice, and peer assisted learning opportunities, please visit https://www.utas.edu.au/students/learning.

The University also provides free access to Studiosity, 24/7 online study help for all UTAS students, enabling them to get feedback on written work within 24 hours or chat live with a subject specialist anywhere and anytime.

All direct assessment-based feedback is provided only from the staff teaching you the unit.
Further information and assistance

More information with regard to content, assessments, grading, GPA etc. is found in the Course Rules Document, available on the AMC website: http://amc.edu.au/ncmeh-course-information

If you are experiencing difficulties with your studies or assignments, have personal or life-planning issues, disability or illness which may affect your course of study, you are advised to raise these with the unit coordinator in the first instance.

In addition to Learning Support, there is a range of University-wide support services available to you including Student Advisers, Disability Services, and more which can be found on the Study Support and Resources and Safety, Health and Wellbeing pages from the Current Students portal of the University website.

Should you require assistance in accessing the Library, visit their website for more information.