JEE359
DESIGN OF FLOATING OFFSHORE STRUCTURES

Semester 2, 2020

Unit Outline

Dr Nagi Abdussamie
CONTACT DETAILS

Unit coordinator

Unit coordinator / Lecturer: Dr Nagi Abdussamie
Campus: Newnham
Email: nagia@utas.edu.au
Phone: 03 6324 3637
Room location and number: Swanson Building, G68
Consultation hours: Appointment by email
CONTENTS

WHAT IS THE UNIT ABOUT? 2
UNIT DESCRIPTION 2
INTENDED LEARNING OUTCOMES 2
GRADUATE STATEMENT 3
ALTERATIONS TO THE UNIT AS A RESULT OF STUDENT FEEDBACK 3
PRIOR KNOWLEDGE &/OR SKILLS 3
HOW WILL I BE ASSESSED? 4
ASSESSMENT SCHEDULE 4
ASSESSMENT DETAILS 4
HOW YOUR FINAL RESULT IS DETERMINED 7
SUBMISSION OF ASSIGNMENTS 7
ACADEMIC INTEGRITY 8
WHAT LEARNING OPPORTUNITIES ARE THERE? 10
MyLO 10
RESOURCES 10
ACTIVITIES 11
UNIT SCHEDULE 12
COMMUNICATION 15
CONCERNS AND COMPLAINTS 15
LEARNING SUPPORT 15
FURTHER INFORMATION AND ASSISTANCE 15
WHAT IS THE UNIT ABOUT?

Unit description

This unit is an advanced ocean engineering unit that introduces the students to the complex hydrodynamic and structural problems associated to the design of floating structures. By combining the knowledge gained in Hydrostatics, Applied Ocean Wave Mechanics and Mechanics of Solids, students will learn the engineering principles that dictate the size and govern the loads and motions experienced by free and moored floating structures. Finally, the students will be exposed to current experimental and numerical simulation techniques used to evaluate the performance of these structures.

Intended Learning Outcomes

On completion of this unit, you will be able to:

1. Appraise the commercial, technical, environmental and social factors that influence the design of floating structures.

2. Proficiently use applicable analysis techniques and relevant design codes to determine the optimum configuration and main dimensions of a floating structure taking into considerations the factors in point 1 above.

3. Analyse the global performance of floating structures and evaluate the optimum mooring configuration.

4. Develop numerical models and scale model tests to evaluate the hydrodynamic characteristic and performance of a floating offshore structure.
Graduate Statement

Successful completion of this unit supports your development of course learning outcomes, which describe what a graduate of a course knows, understands and is able to do. Course learning outcomes are published in the Bachelor of Engineering (Specialisation) with Honours Course Rules. This document is available at http://www.amc.edu.au/ncmeh-course-information.

Course learning outcomes are developed with reference to national discipline standards, Australian Qualifications Framework (AQF), any professional accreditation requirements and the University of Tasmania’s Graduate Statement.

The University of Tasmania experience unlocks the potential of individuals. Our graduates are equipped and inspired to shape and respond to the opportunities and challenges of the future as accomplished communicators, highly regarded professionals and culturally competent citizens in local, national, and global society. University of Tasmania graduates acquire subject and multidisciplinary knowledge and skills, and develop critical and creative literacies and numeracies and skills of inquiry. They demonstrate the ability to apply this knowledge in changing circumstances. Our graduates recognise and critically evaluate issues of social responsibility, ethical conduct and sustainability, are entrepreneurial and creative, and are mindful of their own wellbeing and that of the community. Through respect for diversity and by working in collaborative ways, our graduates reflect the values of the University of Tasmania.

Alterations to the unit as a result of student feedback

No alterations.

Prior knowledge &/or skills

JEE221: Fluid Mechanics is a pre-requisite to this unit.
HOW WILL I BE ASSESSED?

Assessment schedule

<table>
<thead>
<tr>
<th>Assessment task</th>
<th>Date due</th>
<th>Percent weighting</th>
<th>Links to Intended Learning Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Online Quiz 1</td>
<td>Week 4</td>
<td>5%</td>
<td>1, 2</td>
</tr>
<tr>
<td>Individual Design Project</td>
<td>Week 7</td>
<td>30%</td>
<td>1, 2, 3</td>
</tr>
<tr>
<td>Online Quiz 2</td>
<td>Week 11</td>
<td>5%</td>
<td>3, 4</td>
</tr>
<tr>
<td>Team Design Project</td>
<td>Week 12, 13</td>
<td>30%</td>
<td>3, 4</td>
</tr>
<tr>
<td>Final Exam</td>
<td>Exam period</td>
<td>30%</td>
<td>1, 2, 3, 4</td>
</tr>
</tbody>
</table>

IMPORTANT NOTE: due to the ongoing changes in restrictions brought about by COVID-19, please be aware that the assessment tasks and requirements for this unit may change. Students will be notified in writing at the earliest opportunity should changes be necessary; please check your emails and/or the MyLO site regularly.

Assessment details

Assessment task 1 and 3: Online Quizzes

Task description: Participate in online quizzes, apply knowledge and implement methodologies to solve simple problems related to topics discussed in class to date. The quiz consists of several multiple-choice questions and is administered online via MyLO.

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Measures Intended Learning Outcome:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Criterion 1</td>
<td>Quiz 1: Demonstrate knowledge in hydrodynamic design aspects. 30 points</td>
</tr>
<tr>
<td>Criterion 2</td>
<td>Quiz 1: Correct understanding of sizing problems and correct application of knowledge to solve them. 70 points</td>
</tr>
<tr>
<td>Criterion 3</td>
<td>Quiz 2: Demonstrate knowledge in mooring design and global performance requirements. 50 points</td>
</tr>
<tr>
<td>Criterion 4</td>
<td>Quiz 2: Analyse and interpret model testing findings. 50 points</td>
</tr>
</tbody>
</table>

Task length: 120 Minutes

Due date: Quiz 1: week 4, 07/Aug (4:00 pm) via MyLO
Quiz 2: week 11, 02/Oct (4:00 pm) via MyLO
Assessment task 2: Individual Design Project

<table>
<thead>
<tr>
<th>Task description</th>
<th>Criterion</th>
<th>Measures Intended Learning Outcome:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perform preliminary sizing and design of a floating offshore structure (TLP or a free-floating platform) to be used as Floating Production Units (FPU). The scope of the assignment includes the determination of the general particulars, weights, hydrostatic stability in operating and installation conditions, estimation of the global performance parameters of the floating structure, and estimation of the design sensitivities. The assignment shall be reported in the format of a technical report (30 – 40 pages).</td>
<td>Criterion 1 Prepare a Basis of Design (summary) for the offshore structure project. 10 points</td>
<td>ILO1</td>
</tr>
<tr>
<td></td>
<td>Criterion 2 Calculate dimensions of the floating substructure, its weight, displacement and hydrostatic stability to comply with the design requirements. Calculate natural periods of the floating structure. Quantify the impact of variability of design parameter on the design and compliance with the design basis requirements. 50 points</td>
<td>ILO2</td>
</tr>
<tr>
<td></td>
<td>Criterion 3 Calculate wind and current loads, estimate wave drift force. Estimate the design motions of the structure. 20 points</td>
<td>ILO2</td>
</tr>
<tr>
<td></td>
<td>Criterion 4 Specify requirements for model testing of an offshore structure. Develop the proposal for model tests. 10 points</td>
<td>ILO3</td>
</tr>
<tr>
<td></td>
<td>Criterion 5 Communicate in writing in the form of technical assignment. 10 points</td>
<td>Prior knowledge</td>
</tr>
<tr>
<td>Task length</td>
<td>30-40 (A4-page of technical report format) + technical drawings</td>
<td></td>
</tr>
<tr>
<td>Due date</td>
<td>28/Aug (4:00 pm) via MyLO</td>
<td></td>
</tr>
</tbody>
</table>
Assessment task 3: Team Design Project

Task description
In a team you are tasked with selecting the best concept from the Individual Design Project and carrying out a more detailed hydrostatic stability and global performance analysis to optimise the hull size and mooring configuration.

The design optimisation includes the development of numerical model and experimental model test in AMC Model Test Basin to verify the theoretical prediction.

Each team must prepare a technical report of the analysis and experiments (30 – 40 pages). 20% for the report and 10% for the presentation.

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Measures Intended Learning Outcome:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Criterion 1</td>
<td>Plan and carry out a model test program for an offshore structure. 30 points</td>
</tr>
<tr>
<td>ILO4</td>
<td></td>
</tr>
<tr>
<td>Criterion 2</td>
<td>Process results and compare them with numerical/theoretical predictions and design requirements. 50 points</td>
</tr>
<tr>
<td>ILO3, ILO4</td>
<td></td>
</tr>
<tr>
<td>Criterion 3</td>
<td>Communicate in the form of a technical report. 20 points</td>
</tr>
<tr>
<td>Prior knowledge</td>
<td></td>
</tr>
<tr>
<td>Criterion 4</td>
<td>Effective communication in oral form through an informative presentation summarising relevant issues and conclusions. 10%</td>
</tr>
<tr>
<td>Prior knowledge</td>
<td></td>
</tr>
</tbody>
</table>

Task length
- Report: 30-40 (A4-page of technical report format) + technical drawings
- Presentation: 20 minutes for each team

Due date
- Presentation: 09/Oct
- Report: 16/Oct (4:00 pm) via MyLO

Final Exam

Description / conditions
This is a take-home open-book examination (TBC) consisting of calculation problems and knowledge questions based on all topics covered in the semester.

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Measures Intended Learning Outcome:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Criterion 1</td>
<td>Accuracy, conciseness and completeness of answers.</td>
</tr>
<tr>
<td>All</td>
<td></td>
</tr>
</tbody>
</table>

Duration
3 hours + 15 minutes reading time

Date
TBC
How your final result is determined

Your final result in this unit is determined according to Academic Senate Rule 6 – Admission, Assessment and Student Progress and the College of Sciences and Engineering Procedure for Processing of Results.

To achieve a full pass in this unit, you must meet all the following:

1. Attain all the Intended Learning Outcomes.
2. Achieve an overall mark of 50%.
3. Your mark for your examination must be at or above 40%.

You will Fail (NN) the unit if your overall mark is less than 45%.

Submission of assignments

All assignments, reports, etc. must be completed using the template provided on the AMC website, unless otherwise specified by the lecturer. All coursework must have the AMC-NCMEH Assignment Cover Sheet attached which can be downloaded here: http://amc.edu.au/ncmeh-course-information

All assignments and reports must be typed and completed using Word, Excel, approved Engineering drawing software and include the relevant theory, illustrations, results, analysis, and conclusion.

Group reports must be signed by all participants.

Assignments and reports must be placed in the lecturer’s assignment box by the due dates (ground floor in the Swanson Building).

Electronic submissions are not acceptable (unless otherwise instructed by the lecturer). The assessed work will be returned during lecture or as agreed between the students and the lecturer.

Please remember that you are responsible for lodging your coursework on or before the due date. We strongly recommend that you keep a copy; even in the most ‘perfect’ of systems, items sometimes go astray.

Requests for extensions

Extensions will only be granted on medical or compassionate grounds. Requests for extensions should be made via email to the lecturer prior to the due date. Medical certificates or other evidence must be included (electronically or the hard copy mailed) and must contain information which justifies the extension sought.

Penalties

Late assignments which have not been granted an extension will, at the lecturer’s discretion, be penalised by deducting ten per cent of total marks for each day overdue. Assignments submitted more than five days late will normally not be accepted by the lecturer.
Failure to adhere with the WH&S standards whilst taking part in any assessed activity that involves field trips and/or that requires the use of UTAS or AMC facilities will result in the following penalties:

- **first offense:** 5% penalty (applicable to the whole team in team projects);
- **second offense by student (or another member of the same team in team projects):** 20% penalty (applicable to the whole team in team projects); and
- **third offense:** a fail grade in the assessment.

Review of results and appeals

If you have questions about, or problems with, your assessment you should discuss this with the following people:

(1) The person who marked the assessment.

(2) Unit Coordinator.

(3) Course Coordinator.

(4) Director, NCMEH.

If this does not resolve the issue, you may file a formal review of assessment. The procedure is given at: http://www.utas.edu.au/exams/results

Academic integrity

What is academic integrity?

The University community is committed to upholding the Statement on Academic Integrity. A breach of academic integrity is defined as being when a student:

- a) fails to meet the expectations of academic integrity; or
- b) seeks to gain, for themselves or for any other person, any academic advantage or advancement to which they or that other person is not entitled; or
- c) improperly disadvantages any other member of the University community.

Breaches of academic integrity such as plagiarism, contract cheating, collusion and so on are counter to the fundamental values of the University and can result in a range of penalties. These penalties are outlined in [Ordinance 9: Student Academic Integrity](http://www.utas.edu.au/exams/results).

More information is available from the [Academic Integrity for Students webpage](http://www.utas.edu.au/exams/results).

The University and any persons authorised by the University may submit your assessable works to a text matching service, to obtain a report on possible instances of plagiarism or contract cheating.
Academic Integrity Training Module

As part of the University’s educative approach to academic integrity, there is a short Academic Integrity Training Module that all students are required to complete.

Completion of the module allows you to demonstrate your understanding of what constitutes academic misconduct.

The Academic Integrity Training Module is available for all students through MyLO.

If you do not complete this module your final unit results will be withheld.

You should aim to complete the module within the first few weeks of commencing study at the University.

Academic referencing

In your written work you will need to support your ideas by referring to scholarly literature, works of art and/or inventions. It is important that you understand how to correctly refer to the work of others and maintain academic integrity.

Failure to appropriately acknowledge the ideas of others constitutes a breach of academic integrity, a matter considered by the University of Tasmania as a serious offence.

The appropriate referencing style for this unit is APA (American Psychological Association) (https://utas.libguides.com/referencing/APA).

The University library provides information on presentation of assignments, including referencing styles and should be referred to when completing tasks in this unit.

For further information, see the Academic Integrity for Students webpage.
WHAT LEARNING OPPORTUNITIES ARE THERE?

MyLO

MyLO is the online learning environment at the University of Tasmania. This is the system that will host the online learning materials and activities for this unit.

Getting help with MyLO

It is important that you are able to access and use MyLO as part of your study in this unit. To find out more about the features and functions of MyLO, and to practice using them, visit the Getting Started in MyLO unit.

For access to information about MyLO and a range of step-by-step guides in pdf, word and video format, visit the MyLO Student Support page on the University website.

If something is not working as it should, contact the Service Desk (Service.Desk@utas.edu.au, phone 6226 1818), or Request IT Help Online.

Resources

Required readings

There are no required textbooks for this unit. Lecture notes and additional reading materials will be available through MyLO.

Recommended readings

Reading Lists

Reading Lists provide direct access to all material on unit reading lists in one place. This includes eReadings and items in Reserve. You can access the Reading List for this unit from the link in MyLO, or by going to the Reading Lists page on the University Library website.

Equipment, materials, software, accounts

Materials to be provided by the student

- A non-programmable scientific calculator (Casio fx-82AU PLUS II) is required at all times.
- A4 notebook for tutorial calculations.

Materials to be provided by AMC

- Model building materials and measurement tools will be available to use at the Model Test Basin.
Extra costs

• Safety shoes
• Safety glasses
• Lab coat

Computer hardware & software

• Access is provided to PCs and software packages including CAD, MS applications, Endnote, MATLAB, AQWA and Orcaflex.

Activities

Learning expectations

The University is committed to high standards of professional conduct in all activities, and holds its commitment and responsibilities to its students as being of paramount importance. Likewise, it holds expectations about the responsibilities students have as they pursue their studies within the special environment the University offers.

Students are expected to participate actively and positively in the teaching/learning environment. They must attend classes when and as required, strive to maintain steady progress within the subject or unit framework, comply with workload expectations, and submit required work on time.

Details of teaching arrangements

<table>
<thead>
<tr>
<th>CLASS</th>
<th>DAY</th>
<th>TIME</th>
<th>LOCATION</th>
<th>GROUP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>Monday</td>
<td>10:00-11:50</td>
<td>Delivered online</td>
<td>ALL</td>
</tr>
<tr>
<td>Lecture/Tutorial</td>
<td>Thursday</td>
<td>10:00-11:50</td>
<td>Delivered online</td>
<td>ALL</td>
</tr>
<tr>
<td>Lab</td>
<td>Thursday, 17/Sep</td>
<td>9:00-17:00</td>
<td>AMC Model Test Basin</td>
<td>Team dependent</td>
</tr>
</tbody>
</table>

Check tutorial groups and lab timetable/groups to identify your designated time and day.
<table>
<thead>
<tr>
<th>WEEK</th>
<th>DATE BEGINNING</th>
<th>TOPIC/ MODULE/ FOCUS AREA</th>
<th>ACTIVITIES</th>
<th>READINGS/ FURTHER INFO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13 July</td>
<td>Unit setup</td>
<td>Lecture</td>
<td>WK1 Lecture Notes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Introduction to offshore structure design process</td>
<td>Assignment 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Design Basis: design data and client requirements, metocean data, design codes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>20 July</td>
<td>General design principles – weight, hydrostatic stability, TLP design principles, requirements of global performance and air gap, design approaches</td>
<td>Lecture / tutorial</td>
<td>WK2 Lecture Notes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Intro to panel method / diffraction software</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>27 July</td>
<td>Hull sizing – ship-shaped structures Hull sizing – SPAR, semisubmersibles Topside layouts and wind loads</td>
<td>Lecture / tutorial</td>
<td>WK3 Lecture Notes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Diffraction software</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3 August</td>
<td>Hull sizing – tension leg platforms (TLPs) Tendon Design Offset and setdown Current loads and mean drift force</td>
<td>Lecture / tutorial</td>
<td>WK4 Lecture Notes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Diffraction software</td>
<td>Online Quiz 1 due</td>
</tr>
<tr>
<td>5</td>
<td>10 August</td>
<td>Linearised motions of floating body – wave frequencies, diffraction and radiation problems, concept of RAO</td>
<td>Lecture / tutorial</td>
<td>WK5 Lecture Notes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Diffraction software</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>17 August</td>
<td>Slow drift / low frequency motions of floating body – concept of QTF Simplified assessment of floating body motions (WF and LF)</td>
<td>Lecture / tutorial</td>
<td>WK6 Lecture Notes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Diffraction software</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>24 August</td>
<td>Overview of mooring systems including anchoring systems Catenary equations, load – excursion curve</td>
<td>Lecture / tutorial</td>
<td>WK7 Lecture Notes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mooring analysis software</td>
<td>Assignment 1 due</td>
</tr>
</tbody>
</table>
Mid semester break: 31 August – 6 September

<table>
<thead>
<tr>
<th>Week</th>
<th>Date</th>
<th>Topic</th>
<th>Lecture / Tutorial</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>7 September</td>
<td>No Lectures</td>
<td>Model Construction</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>14 September</td>
<td>Taut mooring line; load – excursion curve</td>
<td>Lecture / tutorial Mooring analysis software Model Test Basin</td>
<td>WK9 Lecture Notes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Static mooring analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Selection of mooring materials</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>21 September</td>
<td>Quasi-static mooring analysis</td>
<td>Lecture / tutorial Mooring analysis software</td>
<td>WK10 Lecture Notes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Introduction to dynamic mooring analysis and mooring design software tools</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>28 September</td>
<td>Hull structure and strength – ship-shaped and semisubmersibles, SPAR and TLPs</td>
<td>Lecture / tutorial Hydrodynamic and structural software Online Quiz 2 due</td>
<td>WK11 Lecture Notes</td>
</tr>
<tr>
<td>12</td>
<td>5 October</td>
<td>Selected topics: construction and installation issues, lifting operations, load-out, float-over, decommissioning, repurposing to offshore renewable energy applications</td>
<td>Lecture / tutorial Team Presentations due</td>
<td>WK12 Lecture Notes</td>
</tr>
<tr>
<td>13</td>
<td>12 October</td>
<td>Unit Revision</td>
<td>Q and A Assignment 2 due</td>
<td>WK13 Lecture Notes</td>
</tr>
</tbody>
</table>

Topics covered

Offshore structure design process

Types of floating structures, design spiral, design codes, design requirements, environmental loads

Hull sizing and global performance

Weight – buoyancy balance; hydrostatic stability requirements; global performance issues: natural frequencies, mean set-down, air gap, and vortex-induced motion
Motions of floating bodies
Wave-frequency motion: diffraction and radiation problems, added mass and wave damping, concept of RAO.
Low-frequency motion: source of drift motion, QTF
Samples of simplified motion assessments: single degree of freedom system
Introduction to panel method / diffraction software

Mooring Design
Mooring configurations and materials, anchoring systems, static and dynamic analyses, introduction to mooring design software

Hull structure and strength
Structural configurations for different types of floating structure. Design of primary structural members. TLP tendon design

Construction and installation issues
Dry tow, wet tow, mooring installation, topsides mating

Specific attendance/performance requirements
Attendance at all assigned class times is expected. You are responsible for all information (both academic and administrative) presented during class times. Should you miss a class for whatever reason it is your responsibility to obtain information and content that was missed. Attendance at all tutorials, laboratory and practical sessions (including any project work) is recommended.

In this unit, your active engagement will be monitored in the following way:
1. Your conduct of online quiz 1 in Week 4
2. Your active engagement with class tutorials

If you do not demonstrate evidence of having engaged actively with this unit by completing these two activities by Weeks 4 of semester, your enrolment may be cancelled, or you may be withdrawn from the unit.

Teaching and learning strategies
• Actively stay engaged in all the designed learning activities such as the team assignments, tutorials, workshops and Model Testing.
• Manage your study load and schedule carefully, and your time effectively for all tasks.

Work Health and Safety (WHS)
The University is committed to providing a safe and secure teaching and learning environment. In addition to specific requirements of this unit you should refer to the University's Safety and Wellbeing webpage and policy.
Ensure your safety and follow the university requirements for all on-campus activities during model construction and testing at the Build Studio B05 and Model Test Basin in Weeks 8 and 9.

Communication

News and announcements may be posted to MyLO News, and students will be expected to be aware of the content of such posts within 48 hours of them being posted.

Students are also expected to check their UTAS email very regularly (once a day) for important announcements.

Concerns and complaints

The University is committed to providing an environment in which any concerns and complaints will be treated seriously, impartially and resolved as quickly as possible. We are also committed to ensuring that a student may lodge a complaint without fear of disadvantage. If you have a concern, information about who to contact for assistance is available on the ‘How to resolve a student complaint’ page.

Learning support

The University provides a range of face-to-face and online services to help equip students with the academic and literacy skills that they need to undertake their study. These services are in addition to the support you receive in each unit from unit coordinators, lecturers and tutors. For details of these additional services such as workshops, individual consultation for learning advice, and peer assisted learning opportunities, please visit https://www.utas.edu.au/students/learning.

The University also provides free access to Studiosity, 24/7 online study help for all UTAS students, enabling them to get feedback on written work within 24 hours or chat live with a subject specialist anywhere and anytime.

All direct assessment-based feedback is provided only from the staff teaching you the unit.

Further information and assistance

More information with regard to content, assessments, grading, GPA etc. is found in the Course Rules Document, available on the AMC website: http://amc.edu.au/ncmeh-course-information

If you are experiencing difficulties with your studies or assignments, have personal or life-planning issues, disability or illness which may affect your course of study, you are advised to raise these with the unit coordinator in the first instance.

In addition to Learning Support, there is a range of University-wide support services available to you including Student Advisers, Disability Services, and more which can be found on the Study Support and Resources and Safety, Health and Wellbeing pages from the Current Students portal of the University website.

Should you require assistance in accessing the Library, visit their website for more information.